eStoreRx™
Online Supplement Dispensary
eStoreRx™ is an easy direct-to-patient ordering & fulfilment program for lifelong wellness.
For over 40 years, Biotics Research Corporation has revolutionized the nutritional supplement industry by utilizing “The Best of Science and Nature”. Combining nature’s principles with scientific ingenuity, our products magnify the nutritional
eStoreRx™ is an easy direct-to-patient ordering & fulfilment program for lifelong wellness.
Biotics Research is proud to expand our commitment to education with the Wellness Unfiltered Pro Podcast. Each episode delves into key health topics and the clinical applications of our premier products. Through candid, insightful conversations, our team offers practical guidance to keep you informed and empowered as a healthcare professional.
January 16 2025
A systematic review and meta-analysis published in Sleep & Breathing evaluated the association between serum levels of 25-hydroxyvitamin D (25OHD)...
An intriguing study found different effects on pregnant mice’s liver metabolism as a result of vitamin D deficiency (VDD) depending on genetic background.
Maternal VDD has serious implications for both fetal and maternal health, including fetal growth and skeletal health, as well as increased risk of gestational diabetes and pre-eclampsia for the mother. However, the molecular mechanisms remain a mystery.
Metabolomics has introduced new ways to investigate these mechanisms and help to define new potential health consequences. This work is already being done in studies that explore connections such as those between the metabolic regulation related to oxidative stress and inflammation in pregnant women and vitamin D, and exploring the effects of supplementation on metabolic biomarkers of obesity-related phenotypes in obese adults.
However, metabolomics research on maternal vitamin D status during the perinatal stage is lacking. It could be of special significance because of the ability of liver metabolomics assessment to show us a snapshot of one of the most important organs in nutrient and drug metabolism with a high level of sensitivity.
This particular study looked at the extent to which naturally occurring genetic differences affect maternal liver metabolic response to VDD, particularly during the perinatal period. A panel of 8 inbred Collaborative Cross mouse strains with different genetic backgrounds were used. A vitamin-D-deficient or -sufficient diet was provided and metabolite changes were observed.
The results showed a significant VDD effect, with altered concentrations of 78 metabolites included in lipid, amino acid and nucleotide metabolism. Metabolites in unsaturated fatty acid and glycerophospholipid metabolism pathways were significantly enriched. The amount of metabolic response to deficiency was strongly dependent on genetic strain. (Two distinct strains, CC017/Unc and CC032/GeniUnc, were especially sensitive to VDD, yet each strain affected different pathways.)
Human research is warranted to ascertain if the effects seen here of vitamin D in people with different genetic backgrounds are similar.
Submit this form and you'll receive our latest news and updates.
A systematic review and meta-analysis published in Sleep & Breathing evaluated the association between serum levels ...
Learn moreA systematic review and meta-analysis recently published in the Journal of the Academy of Nutrition and Dietetics examin...
Learn moreA recent study has shown that out of 120 women with polycystic ovary syndrome (PCOS), the majority showed low levels of ...
Learn more
*These statements have not been evaluated by the Food and Drug Administration. This product has not intended to diagnose, treat, cure, or prevent any disease.
Proposition 65 Warning
© 2023 Biotics Research Corporation - All Rights Reserved
Submit your comment