Subscribe

Receive updates about our latest products in your inbox

Register For Our Next Webinar

Implementing the WholeLifeRx Program for Optimal Patient and Practice Outcomes

About Us

For over 40 years, Biotics Research Corporation has revolutionized the nutritional supplement industry by utilizing “The Best of Science and Nature”. Combining nature’s principles with scientific ingenuity, our products magnify the nutritional

Search the Blog

    Gut Microbiota and the Neuroendocrine System

    Gut_bacteria_1The gut-brain axis is undeniable, but specific mechanisms of influence continue to be investigated. Specifically, the gut microbiota is now considered the body’s major neuroendocrine system, controlling body processes including the stress response and the hypothalamic-pituitary-adrenal (HPA) axis. 

    Back in the early 20th century, Nobel laureate, Ilya Metchnikoff, observed that the growth of cholera could be reduced by some microbes and enhanced by others. He proposed that commensal bacteria within the intestine could contribute to protection against this pathogen and alteration of the gut bacteria could prevent disease. In 2001, Nobel Prize winner Joshua Lederberg coined the term “microbiome”. The microbiome is the “ecological community of commensal, symbiotic and pathogenic microorganisms” that can be found on mucosal surfaces, including the eye, mouth, lungs, and the gut. Recent research reviews the connection between the microbiota and the neuroendocrine system.

    The article is a review of the literature showing the connection of the microbiome to remyelination, microglia function, diseases like multiple sclerosis (MS), recovery from spinal cord injury and even behavior. The article cites research that links MS with intestinal permeability. Other research shows a link between the microbiome and pediatric MS, suggesting a connection between myelin production and metabolites produced by gut microbes (particularly p-cresol). Short chain fatty acids from the bowel flora (especially butyrate) affect remyelination, microglia function, and also oligodendrocyte differentiation. In the autoimmune disease, neuromyelitis optica, research shows there may be a connection to bowel ecology. Another study showed the connection between CNS inflammation and the gut microbiome in mice.

    We have not yet gotten to the point where we can identify specific bowel microbes and specific diseases. One study, however, has taken a step in that direction. It found that recolonization with wild type B. fragilis maintained resistance to experimental autoimmune encephalomyelitis, whereas reconstitution with polysaccharide A-deficient B. fragilis restored experimental autoimmune encephalomyelitis susceptibility.

     

    Related Biotics Research Products:  GI-Resolve,  BioDoph-7 Plus

    Submit your comment

    Related Post

    New Study Shows Microbiome Influences Antibody Production

    Because the microbiota is so complex, containing hundreds of different bacterial species, it was not known how the prese...

    Learn more

    The Mediterranean Diet Changes the Gut Microbiome in Older People

    A new study investigated the role of the Mediterranean diet on the gut flora of an elderly group over one year, and the ...

    Learn more

    Molecule Links Weight Gain to Gut Bacteria

    UT Southwestern scientists have discovered a key driver behind the communication that helps synchronize nutrient absorpt...

    Learn more